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I. Introduction

S INCE the early 1970s, tethered satellite systems have been
considered and studied for space missions, providing a number

of useful applications [1]: creation of artificial gravity, generation of
thrust maneuvers and exchange of angular momentum, atmospheric
studies, etc. The key characteristic that makes the use of tethers
appealing is lightness. In space, the forces needed to keep objects
together using a tether are small, thus very thin cables can be used to
connect satellites, and small sections mean small weights, an
essential requirement for space operations.

In 2002, Misra [2] performed an analytical study of the planar
three-body tethered system, including the linear stability of their
equilibrium configurations. He concluded that the triangular
configurations of the system are unstablewhereas one of the collinear
configurations is stable. Following the analytical formulation given
in Misra’s work, Tan and Bainum [3] have considered nonrigid
tethered systems using a three-body configuration. The authors
suggested a tetrahedron tethered system for Earth’s aurora
observation missions and gave a preliminary design of a controller
for use with an orbiting tethered system in formation flying.

The present paper studies the equilibrium configurations of a four-
body tethered system. The study is based on the analytical
development done by Misra [2] for the three-body system. Once the
equilibrium solutions of this last problem are known, then the basic
idea is to continue these solutions when one of the bodies of the
system splits into two pieces. The continuation procedure introduced
can be extended to a n-body system.

II. Equations of Motion

Consider a system of four point masses m1, m2, m3, and m4,
connected by tethers of lengths l1, l2, and l3 (with li joining mi and

mi�1) and of total massm. The tethers are assumed inextensible and
massless. The four bodies are also assumed to move on a plane in
such way that the baricenter of the system moves along a circular
orbit around the Earth with angular velocity�. As shown in Fig. 1, a
reference frame is introduced that has its origin at the baricenter of the
system; the x-axis is along the Earth—baricenter line, and the y-axis
is parallel to the baricenter’s velocity vector.

To derive the equations of motion for the tethered system,
expressions for the kinetic and potential energies of the system are
generated, and then substituted into Lagrange’s equation. The
resulting equations of motion are

�1�1 � �1�l21� ��1 � 3�2 cos �1 sin �1�
� �1��3 � �4�l1l2� ��2 cos��1 � �2� � 3�2 cos �2 sin �1�
� �1�4l1l3� ��3 cos��1 � �3� � 3�2 cos �3 sin �1�
� �1��3 � �4�l1l2� _�22 � 2� _�2� sin��1 � �2�
� �1�4l1l3� _�23 � 2� _�3� sin��1 � �3� � 0 (1)

��1 � �2���3 � �4�l22� ��2 � 3�2 cos �2 sin �2�
� �1��3 � �4�l1l2� ��1 cos��1 � �2� � 3�2 cos �1 sin �2�
� �4��1 � �2�l2l3� ��3 cos��2 � �3� � 3�2 cos �3 sin �2�
� �1��3 � �4�l1l2� _�21 � 2� _�1� sin��2 � �1�
� �4��1 � �2�l2l3� _�23 � 2� _�3� sin��2 � �3� � 0 (2)

�4�1 � �4�l23� ��3 ��2 cos �3 sin �3�
� �4��1 � �2�l2l3� ��2 cos��2 � �3� � 3�2 cos �2 sin �3�
� �1�4l1l3� ��1 cos��1 � �3� � 3�2 cos �1 sin �3�
� �1�4l1l3� _�21 � 2� _�1� sin��3 � �1�
� �4��1 � �2�l2l3� _�22 � 2� _�2� sin��3 � �2� � 0 (3)

where �i �mi=m so that
P

4
i�1 �i � 1. The generalized coordinate

�i is the angle between the tether and the x-axis.

III. Analytical Continuation
of the Equilibrium Solutions

Let f1, f2, f3 be the analytical functions that remain when the
derivative terms of �i are set to zero in Eqs. (1–3)

fi��1; �2; �3� � sin �i
X3
j�1

bij cos �j; i� 1; 2; 3 (4)

where bij are the components of the matrix
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The solutions of

F ��1; �2; �3� � �f1; f2; f3� � 0 (5)

give the equilibrium configurations of the tethered system.
The baricentric coordinates, ��1; �2; �3�,

P
3
i�1 �i � 1, of any

point inside the triangle ofmass represents a certainmass distribution
for the three bodies of the system (see Fig. 2). If the body of mass�3

is divided in two pieces, �3 ! ��3; �4� with
P

4
i�1 �i � 1, then the

triangle must be replaced by the tetrahedron of masses. All the
possible values of the masses of the bodies are represented by the
points on and in the tetrahedron. If, for instance, we consider mass
distributions with�1 � �2, then the admissible values of the masses
are those represented by the shaded triangle of Fig. 2. Becausewe are
going to use a continuation procedure, starting with the equilibrium
configurations of the three-body system,wewill follow a certain path
in this tetrahedron, starting on its base (�4 � 0). To this end, we
introduce a continuation parameter �, so that Eq. (5) becomes

G ��1; �2; �3; �� � 0 (6)

Now, if �� 0 the solutions of Eq. (6) must give the three-body
equilibrium configurations and if � > 0, we obtain those of the four-
body case. To get the final mass values ��1; �2; �3; �4� �
��;�;�; 2�� and the final length of the tethers l1 � l2 � l3 � 1, one
possible choice for the continuation procedure is

�3 � �1� ���0
3 and �4 � ��0

3; l3 �
3

2
�l2

where�0
3 � 0:6 is the starting value for�0

3. The continuation process
will always start at the initial equilibrium configurations obtained for
��1; �2; �3� � ��;�; 3�� with �� 0:2.

IV. Linear Stability

The linear variational equations are obtained by introducing small
displacements ��i in the equilibrium configurations under
consideration

�i � �0i � ��i; with i� 1 . . . 3 (7)

The linearization of the differential equations for ��i, after
introducing a new nondimensional independent variable � with
� ��t, and denoting the derivatives with respect to � with a prime,
gives

M��00 � C��0 � K��� 0 (8)

where the matrices M, C, and K depend on the parameter �. The
solutions of Eq. (8) are of type

��� ��0 exp���� (9)

so that the linear stability behavior is determined by the characteristic
exponents � [4]. The equilibrium solutions are asymptotically stable
if all the exponents � have negative real part; if there is at least one �
with a positive real part, then the equilibrium solutions are unstable.
If the linear system has no root with positive real part but has some
imaginary or null root, then the stability analysis will depend on the
full system and not only on its linearization (marginal stable
solutions). Because the system of differential equations can be
written in Hamiltonian form and Hamiltonian systems do not have
asymptotically stable/unstable solutions, the equilibrium configura-
tions of the tethered system do not have the asymptotic behavior. The
numerical routines available in Press et al. [5] were used to find the
numerical values �.

V. Equilibrium Configurations

A. Trivial Equilibrium Configurations

The most trivial solutions of Eq. (4) are those which cancel the
sin �i terms of these equations. They are obtained by setting
�0i � 0; �. In this way, we get the following eight equilibrium
configurations:

S1a � f�0; 0; 0�; �0; 0; ��g; S1b � f��; 0; 0�; ��; 0; ��g
S1c � f�0; �; 0�; �0; �; ��g; S1d � f��; �; 0�; ��; �; ��g

All the preceding eight configurations are vertically aligned and are
displayed in Fig. 3. These solutions could also be obtained using the
continuation procedure already explained, taking as initial states the
E1a, E1b, E1c, and E1d configurations classified by Misra [2].

A second set of trivial solutions is obtained when the cos �i terms
of Eq. (4) vanish. The different possibilities that we have in this
situation give the following equilibrium configurations:

1θ

m3

θ3

θ2
m2

m1

m4

CM´ s orbit

Earth
x

y

Fig. 1 Reference system and angular coordinates for the planar four-

body tethered system.
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Fig. 2 The triangle and tetrahedron of masses.
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S2a � f��=2; �=2; �=2�; ��=2; �=2;��=2�g
S2b � f���=2; �=2; �=2�; ���=2; �=2;��=2�g

S2c � f���=2;��=2; �=2�; ���=2;��=2;��=2�g
S2d � f��=2;��=2; �=2�; ��=2;��=2;��=2�g

These solutions, that are shown in Fig. 4, are all horizontally aligned
and can also be obtained using the continuation procedure, taking as
initial states the configurations E2a, E2b, E2c, and E2d of Misra [2].

All the S2 configurations are unstable, as in the case of three-body
tethered system, and the vertically aligned configurationsS1a andS1d

are linearly stable whereas the S1b and S1c are unstable.

B. The Nontrivial Solutions

The nontrivial solutions of the system formed by Eq. (4) are
found by simple Gaussian elimination. There are two main
equilibrium groups: in the first group, only one of the three
equilibrium angles is fixed, and in the second one, the values of two
angles are fixed. In the first group we have not taken into account
the symmetric cases, by fixing �i � �. These equilibrium
solutions are obtained from the continuation procedure through the
parameter �. They are shown in Tables 1 and 2 and displayed in
Figs. 5 and 6.

The equilibrium configurations S3 can be seen as natural
extensions of E3a and E3b, because the cosine argument does not
change for all �. For the S4 case, it is clear that if �� 0 the
angle �3 is not defined and the denominator is smaller than the
numerator for � � 0:195263. For this reason, the idea of

continuation of the solutions does not make sense (at least for
values of � smaller than 0.195263). The equilibrium solutions
of S5 group have been continued from those of the
three-body configurations E2. All these configurations are
unstable.

The equilibrium configurations of S6 have been continued from
the three-body configurations E4a and E4b. The S7 subset were born
from E3a of the three-body tethered system. When the angle �2 �
120 deg increases towards 180 deg the solution does not exist
because the cosine argument is greater than one; this happens if
� 	 0:57735. These configurations are unstable. For the S8 group,
the unique solution of �3 occurs only for �� 0:666667, meaning that
no continuation procedure could be applied; these configurations are
equal to the ones in S1 which are stable. The other two solutions of S8

are unstable.

VI. Conclusions

Equilibrium configurations of a four-body tethered systems have
been found through the use of a parameterization that takes the three-
body tethered configuration to the four-body one. The equilibrium
solutions are given in terms of trigonometric functions and it has been
shown that some solutions do not exist for any point in the
tetrahedron of masses △��1 � �2; �3; �4� during the continuation
procedure. When the third body splits into two bodies, two
possibilities for the four-body equilibrium solutions arise, thus there
are 16 trivial equilibrium solutions and 24 nontrivial equilibrium
solutions. However, the stability properties of the three-body
solutions can vary along the continuation up to the four-body
problem.
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Fig. 3 Trivial equilibrium configurations: S1a and S1d are stable; S1b and S1c are unstable.
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Table 2 Equilibrium solutions of the nontrivial cases

Group Range of �

S6 �1 �
cos�1
�
2�3l2�3�2�3l1

2�1��1�l1

� ��2; �3� � �0; 0� or ��; �� (0.0, 0.471404)

�1 �
cos�1
�
2�3l2�3�2�3l1

2�1��1�l1

� ��2; �3� � �0; �� or ��; 0� (0.0, 0.666667)

S7 ��1; �3� � �0; 0� or ��; �� �2 �
cos�1
�
� 3�2��1��2�l1�2�1l1

2��1��2�l2

�
(0.0, 0.57735)

��1; �3� � �0; �� or ��; 0� �2 �
cos�1
�
� 3�2��1��2�l1�2�1l1

2��1��2�l2

�
(0.0, 0.666667)

S8 ��1; �2� � �0; 0� or ��; �� �3 �
cos�1
�
� 2��1��2�l2�2�1l1

3��1���3�l1

�
only for �� 0; 0:666667

��1; �2� � �0; �� or ��; 0� �3 �
cos�1
�
� 2��1�2�l2�2�1l1

3��1���3�l1

�
(0.14615, 0.666667)

Table 1 Equilibrium solutions of the nontrivial cases

Group �1 �2 �3 Range of �

S3 0 
cos�1
�
� �1l1

��1��2�l2

� 
 �
2

(0.0, 0.666667)

S4 
cos�1
�

�1����3l2
���3��1�1�l1

�
0 
cos�1

�
2
3

�2l2
����3��1�1�l1

�
(0.195263, 0.666667)

S5 
 �
2 
cos�1

�
� 3

2

�2l1
l2

�
0 (0.0, 0.666667)
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Fig. 4 The S2a, S2b, S2c, and S2d trivial configurations. They are all unstable.
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Fig. 5 From top to bottom, each pair of equilibrium configurations corresponds to S3,S4, and S5. The symmetric cases are not displayed.
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Fig. 6 From top to bottom, each pair of equilibrium configurations corresponds to S6,S7, and S8. The symmetric cases are not displayed.
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