JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS
Vol. 29, No. 6, November—December 2006

Engineering Notes

ENGINEERING NOTES are short manuscripts describing new developments or important results of a preliminary nature. These Notes should not exceed 2500
words (where a figure or table counts as 200 words). Following informal review by the Editors, they may be published within a few months of the date of receipt.
Style requirements are the same as for regular contributions (see inside back cover).

Equilibrium Configurations
of a Four-Body Tethered System

Annelisie A. Corréa*
Instituto Nacional de Pesquisas Espaciais,
12227-010 Sao José dos Campos, Brazil
and
Gerard Gémez'
Universitat de Barcelona, 08007 Barcelona, Spain

DOI: 10.2514/1.18390

I. Introduction

INCE the early 1970s, tethered satellite systems have been

considered and studied for space missions, providing a number
of useful applications [1]: creation of artificial gravity, generation of
thrust maneuvers and exchange of angular momentum, atmospheric
studies, etc. The key characteristic that makes the use of tethers
appealing is lightness. In space, the forces needed to keep objects
together using a tether are small, thus very thin cables can be used to
connect satellites, and small sections mean small weights, an
essential requirement for space operations.

In 2002, Misra [2] performed an analytical study of the planar
three-body tethered system, including the linear stability of their
equilibrium configurations. He concluded that the triangular
configurations of the system are unstable whereas one of the collinear
configurations is stable. Following the analytical formulation given
in Misra’s work, Tan and Bainum [3] have considered nonrigid
tethered systems using a three-body configuration. The authors
suggested a tetrahedron tethered system for Earth’s aurora
observation missions and gave a preliminary design of a controller
for use with an orbiting tethered system in formation flying.

The present paper studies the equilibrium configurations of a four-
body tethered system. The study is based on the analytical
development done by Misra [2] for the three-body system. Once the
equilibrium solutions of this last problem are known, then the basic
idea is to continue these solutions when one of the bodies of the
system splits into two pieces. The continuation procedure introduced
can be extended to a n-body system.

IL

Consider a system of four point masses m,, m,, ms, and my,
connected by tethers of lengths /,, /5, and /5 (with /; joining m; and
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m;, 1) and of total mass m. The tethers are assumed inextensible and
massless. The four bodies are also assumed to move on a plane in
such way that the baricenter of the system moves along a circular
orbit around the Earth with angular velocity 2. As shown in Fig. 1, a
reference frame is introduced that has its origin at the baricenter of the
system; the x-axis is along the Earth—baricenter line, and the y-axis
is parallel to the baricenter’s velocity vector.

To derive the equations of motion for the tethered system,
expressions for the kinetic and potential energies of the system are
generated, and then substituted into Lagrange’s equation. The
resulting equations of motion are

i (1 = 1) B(H; + 392 cos 0, sin 6))
+ (s + )l [0, cos(8;, — 6,) + 3222 cos b, sin 6]
+ 111 ftaly 13[65 cos(B; — 65) + 3222 cos bs sin 6]
+ 1 (s + )l L (6 + 2920,) sin(6; — 6,)

+ piptaly 15(65 + 29203) sin(8) — 63) =0 1)

(11 4 1) (113 + pa)B(B, 4 3927 cos 6, sin 6,)
+ 11 (s + )l [6, cos(8, — 6,) + 3Q2 cos 6, sin 6,]
+ 1a(iy + o) lal3[65 cos(8, — 65) + 3Q2 cos b; sin 6,]
+ 1y (s + )l (6] + 2826,) sin(6, — 6;)

+ (i + 1) L1 (63 + 2965) sin(8, — 63) = 0 2)

ta(1 = pa) (6 + Q2 cos b, sin 65)
+ (i + 12) L[, cos(8, — 65) + 322 cos 6, sin 03]
+ 111 ol I3[0, cos(8; — 65) + 3222 cos 6, sin 65
+ piptal, 15(6] + 2926,) sin(8; — 6))

+ sy + 1) L1 (05 + 226,) sin(6; — 6,) =0 3)

where p; = m;/m so that Y_%_, u; = 1. The generalized coordinate
0; is the angle between the tether and the x-axis.

III. Analytical Continuation
of the Equilibrium Solutions

Let f,, f2, f3 be the analytical functions that remain when the
derivative terms of 6; are set to zero in Egs. (1-3)

3

£i(6y.6.65) =sin6, Y " b;;cos 6,

j=1

i=123 “4)

where b;; are the components of the matrix
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Hitalily

B=3Q% (s +p)lily (i + o) (s + )5 pa(iey + o)y

Hiftalils

The solutions of
F(6,,0,,05) = (f1.f2.f3) =0 &)

give the equilibrium configurations of the tethered system.

The baricentric coordinates, (Wi, ia, 43), D ey i = 1, Of any
point inside the triangle of mass represents a certain mass distribution
for the three bodies of the system (see Fig. 2). If the body of mass 115
is divided in two pieces, 13 — (i3, f44) With Y4, u; = 1, then the
triangle must be replaced by the tetrahedron of masses. All the
possible values of the masses of the bodies are represented by the
points on and in the tetrahedron. If, for instance, we consider mass
distributions with ;t; = u,, then the admissible values of the masses
are those represented by the shaded triangle of Fig. 2. Because we are
going to use a continuation procedure, starting with the equilibrium
configurations of the three-body system, we will follow a certain path
in this tetrahedron, starting on its base (14 = 0). To this end, we
introduce a continuation parameter €, so that Eq. (5) becomes

G (0,,6,,055€) =0 (6)

Now, if € =0 the solutions of Eq. (6) must give the three-body
equilibrium configurations and if € > 0, we obtain those of the four-
body case. To get the final mass values (i, s, U3, hy) =
(@, i, 4, 210) and the final length of the tethers [, = [, = I3 = 1, one
possible choice for the continuation procedure is

Iy ==¢€l,

ps=1—e)pud and p,=eus, B

where (19 = 0.6 is the starting value for 119. The continuation process
will always start at the initial equilibrium configurations obtained for

(15 Moy p3) = (p, o, 3p) with = 0.2.

IV. Linear Stability

The linear variational equations are obtained by introducing small
displacements 46; in the equilibrium configurations under
consideration

0, =6 +680;,, withi=1...3 7

my

CM” s orbit

Fig. 1 Reference system and angular coordinates for the planar four-
body tethered system.

ey + )bl

wa(l = ) 5

The linearization of the differential equations for §&6;, after
introducing a new nondimensional independent variable 7 with
T = Qt, and denoting the derivatives with respect to T with a prime,
gives

MS®" + C60' + Ké® =0 8)

where the matrices M, C, and K depend on the parameter €. The
solutions of Eq. (8) are of type

30 = 60 exp(A1) 9)

so that the linear stability behavior is determined by the characteristic
exponents A [4]. The equilibrium solutions are asymptotically stable
if all the exponents A have negative real part; if there is at least one A
with a positive real part, then the equilibrium solutions are unstable.
If the linear system has no root with positive real part but has some
imaginary or null root, then the stability analysis will depend on the
full system and not only on its linearization (marginal stable
solutions). Because the system of differential equations can be
written in Hamiltonian form and Hamiltonian systems do not have
asymptotically stable/unstable solutions, the equilibrium configura-
tions of the tethered system do not have the asymptotic behavior. The
numerical routines available in Press et al. [5] were used to find the
numerical values A.

V. Equilibrium Configurations
A. Trivial Equilibrium Configurations

The most trivial solutions of Eq. (4) are those which cancel the
sinf; terms of these equations. They are obtained by setting
69 =0, 7. In this way, we get the following eight equilibrium
configurations:

Sla = {(07 0’ 0)7 (0‘ 07 ﬂ)}v
Slc = {(Ov T, 0)1 (0’ T, 71’)},

S, ={(7,0,0), (7,0, 7)}
S1a =0, 7, 0), (7, 7, 7)}

All the preceding eight configurations are vertically aligned and are
displayed in Fig. 3. These solutions could also be obtained using the
continuation procedure already explained, taking as initial states the
E,., E;, E., and E,,; configurations classified by Misra [2].

A second set of trivial solutions is obtained when the cos 6; terms
of Eq. (4) vanish. The different possibilities that we have in this
situation give the following equilibrium configurations:

(U=, 1ty =0, f,=0)
rrees 0.00,1)

(1/5,1/5.1/5.2/5)

(BEL By =0, H3=0) (b=l u2=Q u3=0) (1,0,0,0) =l (0,1,0,0)

Fig. 2 The triangle and tetrahedron of masses.
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Fig. 3 Trivial equilibrium configurations: S, and S,, are stable; S, and S, are unstable.

Sa = (/2. 70/2,7/2), (/2. 7/2, =7/ 2)}
Sy ={(=7/2,7/2,7/2), (=7/2. 7/ 2, =7/ 2)}
Sre ={(=7/2,-7/2.7/2). (-7/2, —7/2, —7/2)}
S2q = (/2. —7/2.7/2), (/2. —7/2, —7/2)}

These solutions, that are shown in Fig. 4, are all horizontally aligned
and can also be obtained using the continuation procedure, taking as
initial states the configurations E,,, E»;, E,., and E,; of Misra [2].

All the S, configurations are unstable, as in the case of three-body
tethered system, and the vertically aligned configurations S, and S,
are linearly stable whereas the S, and S, are unstable.

B. The Nontrivial Solutions

The nontrivial solutions of the system formed by Eq. (4) are
found by simple Gaussian elimination. There are two main
equilibrium groups: in the first group, only one of the three
equilibrium angles is fixed, and in the second one, the values of two
angles are fixed. In the first group we have not taken into account
the symmetric cases, by fixing 6, = . These equilibrium
solutions are obtained from the continuation procedure through the
parameter €. They are shown in Tables 1 and 2 and displayed in
Figs. 5 and 6.

The equilibrium configurations S; can be seen as natural
extensions of E3, and Ej;,, because the cosine argument does not
change for all e. For the S, case, it is clear that if € =0 the
angle 605 is not defined and the denominator is smaller than the
numerator for € <0.195263. For this reason, the idea of

continuation of the solutions does not make sense (at least for
values of € smaller than 0.195263). The equilibrium solutions
of Ss group have been continued from those of the
three-body configurations E,. All these configurations are
unstable.

The equilibrium configurations of S¢ have been continued from
the three-body configurations E,, and E,;,. The S subset were born
from E;, of the three-body tethered system. When the angle 6, =
120 deg increases towards 180 deg the solution does not exist
because the cosine argument is greater than one; this happens if
€ > 0.57735. These configurations are unstable. For the Sg group,
the unique solution of 6; occurs only for € = 0.666667, meaning that
no continuation procedure could be applied; these configurations are
equal to the ones in S which are stable. The other two solutions of Sg
are unstable.

VL

Equilibrium configurations of a four-body tethered systems have
been found through the use of a parameterization that takes the three-
body tethered configuration to the four-body one. The equilibrium
solutions are given in terms of trigonometric functions and it has been
shown that some solutions do not exist for any point in the
tetrahedron of masses A(4; = (s, i3, 1y) during the continuation
procedure. When the third body splits into two bodies, two
possibilities for the four-body equilibrium solutions arise, thus there
are 16 trivial equilibrium solutions and 24 nontrivial equilibrium
solutions. However, the stability properties of the three-body
solutions can vary along the continuation up to the four-body
problem.

Conclusions
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Fig. 4 The S,,, S,;, S»c, and S,, trivial configurations. They are all unstable.
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Table 1 Equilibrium solutions of the nontrivial cases

Group 0, 0, 0 Range of €
S5 0 +cos! (_ %) +Z (0.0, 0.666667)
Sa +cos™! (%) 0 Lcos-! @ wi—M) (0.195263, 0.666667)
Ss +Z +cos—! (_ %e%) 0 (0.0, 0.666667)
Table 2 Equilibrium solutions of the nontrivial cases
Group Range of €
Ss 6, = £cos™! (m;leir;‘lz)/ltlll) (65, 63) = (0,0) or (m, 7) (0.0, 0.471404)
0, = +cos™! (2»45(1?:}316]3)7]3/1) (6, 65) = (0, ) or (,0) (0.0, 0.666667)
S7 (6, 65) = (0,0) or (7, w) 0, = +cos~! (_ 362(;12w(;]#32;522u|’w) (0.0, 0.57735)
(6,.65) = (0.7) or (. 0) 6, = koos™ (— Hlgudlicun) (0.0, 0.666667)
Sy (0. 6,) =(0,0) or (rr, m) only for € =0, 0.666667

(0,,0,) = (0, 7) or (=, 0)

— —1 (2 tp) b2l
03 = £cos ( Sl )

— —1( _ 2(up2) =2, 1
03 = +cos ( T AT )

(0.14615, 0.666667)
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Fig. 5 From top to bottom, each pair of equilibrium configurations corresponds to S;,S,, and Ss. The symmetric cases are not displayed.
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0

05

15 2

25 3

02

12 -

0.8 0.6 0.4

0.2

0

0.2



J. GUIDANCE, VOL. 29, NO. 6: ENGINEERING NOTES 1435

References Auroral Observations Missions,” AIAA Paper 2002-4640, Aug.
- . 2002.
(1] Cosmo, M. L.,and.Lorenzml, E.C, Tet.hers in Space Handbook, NASA [4] Meirovitch, L., Introduction to Dynamics and Control, Wiley, New
Marshall Space Flight Center, Huntsville, AL, 1997.
2] Mi A. K., “Equilibrium Confi i f Tethered Three-Bod York, 1985, Chap. 9.
21 S 1§tra, o 0'1’ Thqyl lsgll;r.rll.t (,),n ﬁlura;lons Ol et Zre A ree-bo ); [5] Press, W. H., Teukolsky, S. A., Vettering, W. T., and Flannery, B. P.,
ysiems an ar Sy, e Journal of the Astronautica Numerical Recipes in Fortran, 2nd ed., Cambridge Univ. Press,

Sciences, Vol. 50, No. 3, 2002, pp. 241-253. . ”
[3] Tan, Z., and Bainum, P. M., “Tethered Satellite Constellations in Cambridge, England, UK., 1993, pp. 362-372.



